
J
H
E
P
0
9
(
2
0
0
7
)
0
0
7

Published by Institute of Physics Publishing for SISSA

Received: May 25, 2007

Revised: July 6, 2007

Accepted: August 16, 2007

Published: September 3, 2007

On the reduction of hypercubic lattice artifacts

Feliciano de Soto

Dpto. de Sistemas F́ısicos, Qúımicos y Naturales,
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Centre de Physique Théorique, Ecole Polytechnique,

CNRS, 91128 Palaiseau, France

E-mail: roiesnel@cpht.polytechnique.fr

Abstract: This note presents a comparative study of various options to reduce the errors

coming from the discretization of a Quantum Field Theory in a lattice with hypercubic

symmetry. We show that it is possible to perform an extrapolation towards the continuum

which is able to eliminate systematically the artifacts which break the O(4) symmetry.

Keywords: Lattice Quantum Field Theory, Lattice QCD, Lattice Gauge Field Theories.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep092007007/jhep092007007.pdf

mailto:fcsotbor@upo.es
mailto:roiesnel@cpht.polytechnique.fr
http://jhep.sissa.it/stdsearch


J
H
E
P
0
9
(
2
0
0
7
)
0
0
7

Contents

1. Introduction 1

2. Hypercubic artifacts 2

3. The free scalar field 5

4. Comparative study of H4 extrapolations 7

5. Conclusion 10

A. H(4) invariants 12

1. Introduction

The problem of restoration of rotational invariance was the focus of much work in the

early days of numerical simulations of lattice gauge theories, which were performed on

very small lattices. Most noteworthy were the attempts to find alternative discretizations

which would approach the continuum limit more rapidly than the simple hypercubic lat-

tice. One line of attack [1] was to discretize gauge theories on the most symmetric of

all four-dimensional lattices, the four-dimensional body-centered hypercubic lattice, whose

point symmetry group is three times as large as the hypercubic group. Another angle of

investigation worth mentioning was to formulate gauge theories on random lattices [2].

The interest in these alternate formulations faded away in subsequent years, first because

of their inherent complications, but mainly when it was realized that rotational invariance

was in fact restored within statistical errors at larger distances on the hypercubic lattice.

However, the treatment of discretization errors in numerical simulations of a lattice

gauge theory can remain a vexing problem in some data analyses. Indeed, the signal of

some lattice observables, such as the two-point Green functions in momentum space, has

become so good that the systematic errors become very much larger than the statistical

errors. A general method, which we call the H4 method, has been devised quite some

time ago [3, 4] to eliminate hypercubic artifacts from the gluon two-point functions and

extrapolate the lattice data towards the continuum. This extrapolation is crucial to succeed

in a quantitative description, at least in the ultraviolet regime. Such a method, despite its

success in describing other two-point functions as well, as the fermion [5] or the ghost [6]

propagators, has not been widely adopted. Indeed, most other studies of the lattice two-

point functions are still using phenomenological recipes [7] which only allow for a qualitative

description of the data, since it is usually not possible to make quantitative fits with a

reasonable chisquare.
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The purpose of this note is threefold. First we want to gather some pieces about the H4

technique which are scattered in various sections of previous publications and which may

have been overlooked. Our second objective is to stress, on a simple controllable model,

that the H4 method can be systematically improved, contrarily to the empirical methods,

when the statistical errors decrease. Our last goal is to point out the general applicability

of the method, not only to those scalar form factors in momentum space which depend on

a single invariant, but also to various other lattice observables.

The plan of the paper is as follows. In the next section we recall the general technique

of hypercubic extrapolations towards the continuum of any lattice scalar form factor de-

pending upon a single momentum. In the following section we show that a simple model, a

free real scalar field in four dimensions, can be used as a testbed for the hypercubic extrap-

olations. Then we make a detailed comparison of the different strategies to eliminate the

hypercubic lattice artifacts. The concluding section is devoted to recommendations about

the best usage of the H4 extrapolation method. We also outline some straightforward

generalizations.

2. Hypercubic artifacts

Any form factor FL(p) which is a scalar invariant on the lattice, is invariant along the orbit

O(p) generated by the action of the isometry group H(4) of hypercubic lattices on the

discrete momentum p ≡ 2π
La

× (n1, n2, n3, n4) where the nµ’s are integers, L is the lattice

size and a the lattice spacing. The general structure of polynomial invariants under a

finite group is known from group-invariant theory [8]. In particular, it can be shown that

any polynomial function of p which is invariant under the action of H(4) is a polynomial

function of the 4 invariants

p[n] ≡
∑

µ

pn
µ, n = 2, 4, 6, 8 (2.1)

which index the set of orbits. The appendix contains an elementary derivation.

It is thus possible to use these 4 invariants to average the form factor over the orbits

of H(4) to increase the statistical accuracy:

FL(p) ≡ FL(p[2], p[4], p[6], p[8]) =
1

‖O(p)‖

∑

p∈O(p)

FL(p) (2.2)

where ‖O(p)‖ is the cardinal number of the orbit O(p).

The orbits of the continuum isometry group O(4) are of course labeled by the single

invariant p[2] ≡ p2, and lattice momenta which belong to the same orbit of O(4) do not

belong in general to the same orbit of H(4). For instance, as soon as n2 ≡
∑4

µ=1 n2
µ = 4 in

integer lattice units, the O(4) orbit splits into two distinct H(4) orbits, those of the vectors

(2, 0, 0, 0) and (1, 1, 1, 1) respectively. Therefore we can distinguish two kinds of lattice

artifacts, those which depend only upon the invariant p2, and which produce the scaling

violations, and those which depend also upon the higher-order invariants p[n] (n = 4, 6, 8)

and which we call hypercubic artifacts. When the difference between the values of FL(p)
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along one orbit of O(4) become larger than the statistical errors, one needs at least to

reduce the hypercubic artifacts from the lattice data before attempting any quantitative

analysis.

The treatment of these discretization artifacts can be inferred from lattice perturbation

theory, as Green functions will depend on some lattice momentum1

p̂µ ≡
2

a
sin

(apµ

2

)
(2.3)

instead of the continuum one, pµ = 2π
La

nµ. By developing the lattice momentum p̂2 ≡
∑

µ p̂2
µ

in terms of the lattice spacing a, one gets:

p̂2 ≈ p2 −
a2

12
p[4] +

a4

360
p[6] −

a6

20160
p[8] + · · · (2.4)

and thus, the lattice momentum differs from the ”continuum” one by discretization artifacts

that are proportional to the invariants p[4] (of order a2), p[6] (order a4), etc.

The strategies to minimize the hypercubic artifacts are based on the fact these artifacts

depend on the non O(4) invariants, p[4], p[6], etc. and thus reducing p[4] would also reduce

the artifacts. For example, the improved restoration of the rotational symmetry on the

four-dimensional body-centered hypercubic lattice can be analyzed in terms of the primitive

invariant p[4] [9] 2. These strategies fall into three general groups:

• The simplest one is just to keep only the H(4) orbits which minimizes p[4] along each

O(4) orbit. As they lay near the diagonal, a more efficient prescription [7] is to impose

a ”cylindrical” cut on the values of p, keeping only those that are within a prescribed

distance of the diagonal. This completely empirical recipe has been widely adopted

in the literature and we shall refer to it in the sequel as the “democratic” method.

The main drawbacks are that the information for most of the momenta is lost (for

moderate lattices only a small fraction of the momenta is kept) and that although

p[4] is small for the orbits kept, it is not null, and therefore the systematic errors are

still present.

• The other methods try to fully eliminate the contribution of p[4], etc. and we will

generically refer to them as the H4 methods. By analogy with the free lattice prop-

agators, it is natural to make the hypothesis that the lattice form factor is a smooth

function of the discrete invariants p[n], n ≥ 4, near the continuum limit,

FL(p2, p[4], p[6], p[8]) ≈ FL(p2, 0, 0, 0) + p[4] ∂FL

∂p[4]
(p2, 0, 0, 0) + (2.5)

p[6] ∂FL

∂p[6]
(p2, 0, 0, 0) + (p[4])2

∂2FL

∂2p[4]
(p2, 0, 0, 0) + · · ·

and FL(p2, 0, 0, 0) is nothing but the form factor of the continuum in a finite volume,

up to lattice artifacts which do not break O(4) invariance and which are true scaling

1Depending on the discretization scheme, it will be bpµ or pµ = 1

a
sin apµ, etc.

2We thank Ph. de Forcrand for pointing out this reference to us.
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violations. We emphasize that we are merely conjecturing that the restoration of

rotational invariance is smooth when taking the continuum limit at fixed p2. When

several orbits exist with the same p2, the simplest method [3] to reduce the hypercubic

artifacts is to extrapolate the lattice data towards FL(p2, 0, 0, 0) by making a linear

regression at fixed p2 with respect to the invariant p[4] (note that the contributions

of other invariants are of higher order in the lattice spacing).

Obviously this method only applies to the O(4) orbits with more than one H(4) orbit.

If one wants to include in the data analysis the values of p2 with a single H(4) orbit,

one must interpolate the slopes extracted from (2.5). This interpolation can be done

either numerically or by assuming a functional dependence of the slope with respect

to p2 based, for example, on dimensional arguments [4]. For instance, for a massive

scalar lattice two-point function, the simplest ansatz would be to assume that the

slope has the same leading behavior as for a free lattice propagator:

∂FL

∂p[4]
(p2, 0, 0, 0) =

a2

(p2 + m2)2
(
c1 + c2a

2p2
)

(2.6)

The range of validity of the method can be checked a posteriori from the smoothness

of the extrapolated data with respect to p2. The quality of the two-parameter fit

to the slopes, and the extension of the fitting window in p2, supplies still another

independent check of the validity of the extrapolations, although the inclusion of

O(4)-invariant lattice spacing corrections is usually required to get fits with a rea-

sonable χ2.

This strategy based on independent extrapolations for each value of p2 will be referred

to as the local H4 method.

• The number of distinct orbits at each p2 –in physical units– increases with the lattice

size and, eventually, a linear extrapolation limited to the single invariant p[4] breaks

down. But, by the same token, it becomes possible to improve the local H4 method

by performing a linear regression at fixed p2 in the higher-order invariants as well.

Therefore, when the lattice size increases, the H4 technique provides a systematic

way to include higher-order invariants and to extend the range of validity of the

extrapolation towards the continuum. For those p2 which do not have enough orbits

to perform the extrapolation, it is still possible to make use of all available physical

information in the modelling of the functional derivatives appearing in (2.5) and to

perform an interpolation.

An alternative strategy is based on the fact that the functional derivatives which

appear in (2.5) are functions of p2 only. These functions can be represented by a

Taylor development in their domain of analyticity, or, more conveniently, by a Lau-

rent series, as it does not assume analyticity and makes appear all the terms allowed

by dimensional arguments. Moreover, it is always possible to use polynomial approx-

imation theory and expand the functional derivatives in terms of, e.g., Chebyshev

polynomials or in a fourier series, etc.

– 4 –
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In any case, these linear expansions allow to perform the continuum extrapolation

through a global linear fit of the parameters for all values of p2 inside a window at

once. Such a strategy has been developed for the analysis of the quark propagator [5]

and we shall refer to it as the global H4 method. The global H4 extrapolation is

simple to implement since the numerical task amounts to solving a linear system.

It provides a systematic way to extend the range of validity of the extrapolation

towards the continuum, not only for large lattices (where the inclusion of O(a4) and

even O(a6) discretization errors becomes possible) but also for small lattices (where

the local H4 method for O(a2) errors is inefficient due to the small number of orbits),

by using in the fit all available lattice data points.

3. The free scalar field

In order to analyze a model simple enough to provide a complete control of the hypercubic

errors in four dimensions, we have chosen a free real scalar field, whose dynamics is given

by the lagrangian:

L =
1

2
m2φ(x)φ(x) +

1

2
∂µφ(x)∂µφ(x) (3.1)

The naive discretization of (3.1) leads to the lattice action:

S =
a4

2

∑

x



m2φ2

x +

4∑

µ=1

(∇µφx)2



 (3.2)

where ∇µ is the forward lattice derivative, or in momentum space,

S =
a4

2

∑

p

(
m2 + p̂2

)
|φ̃p|

2 (3.3)

where p is the discrete lattice momentum. Therefore, the field φ̃p can be produced by

means of a gaussian sampling with standard deviation
√

m2 + p̂2. As this is a cheap lattice

calculation, we can go to rather big volumes, up to 644 in this work, and we can generate a

high number of fully decorrelated configurations. In order to study the effect of statistics

over the results, averages will be made over ensembles of 100 till 1000 configurations.

This lattice model is of course solvable, and the propagator reads:

∆L(p) =
1

p̂2 + m2
(3.4)

The lattice artifacts are exactly computable by expanding p̂2 in terms of the H(4) invariants

introduced in the previous section and plugging the development (2.4) into (3.4),

∆L(p2, p[4], p[6], p[8]) ≈
1

p2 + m2
+ a2

{
1

12

p[4]

(p2 + m2)2

}

+a4

{
1

72

p[4]2

(p2 + m2)3
−

2

8!

p[6]

(p2 + m2)2

}
+ · · · (3.5)
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Figure 1: Raw dressing function ∆L(p)/∆0(p) as a function of p2/m2 for a 324 lattice and am = 1

from a sample size of 1000 configurations.

and the continuum propagator ∆0(p) is indeed recovered smoothly in the limit a → 0.

But as long as we are working at finite lattice spacing, there will be corrections in a2, a4,

etc. that are not at all negligible, as can be appreciated in figure 1 which plots the ratio

∆L(p)/∆0(p) for a 324 lattice.

One could wonder whether such a model is really useful since the lattice artifacts are

exactly known. For instance one can recover the continuum propagator from the lattice

propagator by merely plotting the lattice data as a function of p̂2 rather than p2! However

this simple recipe is no longer applicable to an interacting theory where the lattice two-

point functions do depend upon the independent variables p̂[n] =
∑

µ(p̂µ)n, n = 4, 6, 8 (as

illustrated in figure 1 of reference [3]). And there is no systematic way to separate out

cleanly the effect of these additional variables because p̂2 is not an O(4) invariant. Indeed,

because p̂2 takes on different values on every H(4) orbit, there is only one data point per

value of p̂2 and the H4 method, either local or global, is not appropriate for the choice of

momentum variable p̂.

However one should exercise special attention at using this model without the informa-

tion provided by expression (3.5) (except of course the smoothness assumption in the H(4)

invariants p[n]). Under this proviso, the model can serve as a bench test of the different

approaches to eliminate hypercubic artifacts. In particular we will not use eq. (2.6).

The model has one mass parameter m which fixes the scale. We will study the worst-

– 6 –
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case scenario where m cannot be neglected with respect to p when the lattice artifacts are

large.3

The case of QCD is, in fact, simpler, as long as ΛQCD and quark masses are negligible

in comparison to the momentum scale, which would correspond to the case am ≪ 1. Then,

by dimensional arguments, the artifacts can be modeled at least in the ultraviolet regime,

as proposed in [4] and [5].

4. Comparative study of H4 extrapolations

We will now use a free scalar field with am = 1 to compare the different strategies to

extract the continuum behavior from the lattice data. We will use lattice units and set

a ≡ 1 throughout this section. We restrict ourselves to one or two representative methods

within each strategy:

• The democratic method with a cylindrical cut selecting out the orbits that are within

a distance of 2 lattice units from the diagonal (1, 1, 1, 1).

• The local H4 method with independent extrapolations up to O(a2) artifacts for every

p2 with several orbits within the window n2 > 5 (p = 2π
L

n) up to some n2
max:

∆L(p2, p[4], p[6], p[8]) = ∆L(p2, 0, 0, 0, 0) + c(p2)p[4]

The slopes c(p2) are then fitted with the following functional form

c(p2) =
c−1

p2
+ c0 + c1p

2 (4.1)

which is used to extrapolate the points with only one orbit inside the window ]5, n2
max].

• The global H4 methods with the coefficients of the artifacts up to O(a2) or up to

O(a4) chosen as a Laurent series:

∆L(p2, p[4], p[6], p[8]) = ∆L(p2, 0, 0, 0, 0) + f1(p
2)p[4] + f2(p

2)p[6] + f3(p
2)(p[4])2

fn(p2) =
1∑

i=−1

ci,n(p2)−i , n = 1, 2, 3 (4.2)

With such a choice, a global fit within the window ]5, n2
max] amounts to solving a

linear system of respectively n2
max − 2 and n2

max + 4 equations.4

Notice that we do not use the knowledge of the mass, m = 1, in both the local H4 method

and the global H4 method, neither directly nor indirectly (by introducing a mass scale

as a parameter). Our purpose is to stress the H4 extrapolation methods to their limits.

In practice, of course, all the physical information can be used in order to improve the

elimination of the discretization artifacts.

3As p = 2π

La
n, with n = 0, · · · , L/2, a suitable value is am = 1.

4Those variables correspond respectively to the extrapolated propagators, ∆L(p2, 0, 0, 0, 0), and the 3

coefficients of each Laurent series.
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Figure 2: Comparison of the extrapolated dressing function ∆E(p2)/∆0(p
2) as a function of p2 on

a 324 lattice (a = m = 1), between the democratic method (open squares) and the local H4 method

(black circles) - 1000 configurations.

In figure 2 the extrapolated dressing functions ∆E(p2)/∆0(p
2), with the notation

∆E(p2) ≡ ∆L(p2, 0, 0, 0), of the democratic method and of the local H4 method (with

p2
max = 3π2/4), are compared for 1000 configurations generated on a 324 lattice. It can be

seen that the dressing function of the democratic method deviates very early from unity

whereas the dressing function of the local H4 method is pretty consistent with unity within

statistical errors for p2 up to ≈ π2/4.

Figure 3 compares the extrapolated dressing functions of the global H4 methods, with

respectively up to O(a2) and up to O(a4) artifacts (again with p2
max = 3π2/4), for 1000

configurations generated on a 644 lattice. The global H4 method up to O(a2) performs

roughly as the local H4 method. The global H4 method which takes into account O(a4)

artifacts is able to reproduce the continuum dressing function within statistical errors for

p2 up to ≈ π2/2.

It is possible to put these qualitative observations on a more quantitative basis, and

show precisely the effect of both the lattice size and the sample size on each extrapolation

method. Since all components of a free scalar field in momentum space are independent

gaussian variables, the statistical distribution of the quantity

χ2 =

p2
max∑

p2=1

(
∆E(p2) − ∆0(p

2)

δ∆E(p2)

)2

(4.3)
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Figure 3: Comparison of the extrapolated dressing function ∆E(p2)/∆0(p
2) as a function of p2 on

a 644 lattice (a = m = 1), between the global methods with O(a2) artifacts (open losanges) and

O(a4) (black circles) - 1000 configurations.

should follow exactly the chisquare law for n2
max independent variables, if the systematic

errors of an extrapolation method are indeed smaller than the statistical errors. The

criterion is exact for the democratic and local H4 methods which produce independent

extrapolated values. Extrapolations by the global H4 method are correlated and one must

include the full covariance matrix of the fit in the definition of the chisquare:

χ2 =

p2
max∑

p2=1

p2
max∑

q2=1

(∆E(p2) − ∆0(p
2))M(p2, q2)(∆E(q2) − ∆0(q

2)) , (4.4)

and M(p2, q2) = p2
max(C

−1)(p2, q2) is related to the covariance matrix C(p2, q2).

With these considerations, we compute the χ2/d.o.f. of a zero-parameter fit of the

extrapolated form factor to its known value ∆0(p
2) = 1 for all p2. Figure 4 displays the

evolution of the chisquare per degree of freedom as a function of the fitting window ]5, n2
max]

on a 324 lattice, for each extrapolation method. The local and global H4 methods which

cure just O(a2) artifacts are indeed safe up to p2
max ≈ π2/4.

For the range of lattice sizes and sample sizes considered in this work, the global H4

method which takes into account O(a4) artifacts performs best. With such a method it

is possible to extend the range of validity of the extrapolation towards the continuum up

– 9 –
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Figure 4: Evolution of the χ2/d.o.f as a function of p2

max on a 324 lattice (a = m = 1), for the local

a2 method (blue solid line), the global a2 method (red dotted line) and the global a4 method (green

dash-dotted line). The smooth curves are the 95% confidence levels lines - 1000 configurations.

Lattice size 32 32 64 64

Sample size 100 1000 100 1000

Democratic method 1.4 (2%) 0.54 (0.9%) 1.8 (1.9%) 1.1 (0.6%)

Local a2 method 6.3 (2%) 4.2 (0.8%) 4.4 (1.4%) 3.4 (0.5%)

Global a2 method 6.3 (0.7%) 4.3 (0.3%) 4.0 (0.46%) 3.1 (0.15%)

Global a4 method π2 (0.9%) 9.2 (0.4%) π2 (0.35%) 6.7 (0.12%)

Table 1: p2

max as a function of the lattice size and the sample size for which χ2/d.o.f. = 2. The

statistical error on the extrapolated dressing function is shown between parentheses.

to p2 ≈ 5 − 6, according to the lattice size and at least down to the levels of statistical

accuracy studied here.

5. Conclusion

Table 1 summarizes our findings. For each lattice size, sample size and extrapola-

tion method studied in this work, the table displays the upper bound p2
max of the mo-

mentum window ]0, a2p2
max] (am = 1), inside which the extrapolated dressing function

∆E(p2)/∆0(p
2) is consistent with 1 at a χ2/d.o.f. = 2 level.

– 10 –
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The limits established in table 1 have been obtained as described in section 4. They

could be improved by adding more terms to the Laurent’s development, or taking into

account their perturbative form in the parametrization of the artifacts.

Table 1 is all what is needed to set up an H4 extrapolation towards the continuum.

Our recommendations are the following. If it is not required to push the extrapolation in

a2p2 above ≈ π2/4, then it is sufficient to use an H4 method, either local or global, up to

O(a2) artifacts. On larger windows, the global H4 method at least up to O(a4) artifacts

should be used. The precise tuning of p2
max can be read off the table in each case.

The sample sizes used in this study are what is typically achieved in lattice studies

of two-point functions with O(1 − 10) GFlops computers. With sufficient time allocated

on O(1) Tflops computers, it would become possible to increase the statistics by one or

two orders of magnitude. Then table 1 would no longer be accurate enough and the

analysis of this work would need to be repeated, including the global H4 method up to

O(a6) artifacts in order to keep the extrapolation windows as large. Let us emphasize that

such an analysis is straightforward to implement. With adequate statistics, the global H4

extrapolation method can be systematically improved.

A one or two order of magnitude increase of statistics would also allow to apply the

H4 extrapolation techniques to three-point functions as well. Indeed, with a sample size

around 1000 configurations, the discretization errors in such lattice observables, although

noticeable, are not large enough to be separated from the statistical errors. Three-point

functions depend on two momenta. It can be shown that there are now 14 algebraically

independent symmetric invariants φ(p, q) under the action of the hypercubic group H(4),

and among them, we have the three O(4) invariants

∑

µ

p2
µ ,

∑

µ

q2
µ ,

∑

µ

pµqµ

and 5 algebraically, and functionnally, independent invariants of order a2 which can be

chosen as ∑

µ

p4
µ ,

∑

µ

q4
µ ,

∑

µ

p2
µq2

µ ,
∑

µ

p3
µqµ ,

∑

µ

pµq3
µ

Three-point form factors are usually measured only at special kinematical configurations.

Assuming again smoothness of the lattice form factor with respect to these O(a2) invariants,

the global H4 extrapolation method could still be attempted provided that enough lattice

momenta and enough H4 orbits are included in the analysis.

A more straightforward application of the (hyper)cubic extrapolation method is to

asymmetric lattices L3×T with spatial cubic symmetry. Lattices with T ≫ L are produced

in large scale simulations of QCD with dynamical quarks at zero temperature, whereas

simulations of QCD at finite temperature require lattices with T ≪ L. For such lattices,

the continuum limit can still be obtained within each time slice by applying the techniques

described in this note to the cubic group Oh.

We want to end by pointing out that (hyper)cubic extrapolations methods are not

restricted to momentum space but can also be used directly in spacetime. We will sketch

one example for illustration, the static potential.
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Lattice artifacts show up in the static potential at short distances and the standard

recipe [10] to correct the artifacts is to add to the functional form which fits the static po-

tential a term proportional to the difference δG(R) between the lattice one-gluon exchange

expression and the continuum expression 1/R. The technique we advocate is rather to

eliminate the cubic artifacts from the raw data measured on the lattice.

Indeed the lattice potential extracted from the measurements of an “off-axis” Wilson

loop connecting the origin to a point at distance R =
√

x2 + y2 + z2 can be expressed,5

after averaging over the orbits of the cubic group Oh, as a function of three invariants:

VL(x, y, z) ≡ VL(R2, R[4], R[6]) , R[n] = xn + yn + zn

An extrapolation towards the continuum can be performed with the methods described in

section 2 by making the smoothness assumption with respect to the invariants R[4], R[6].
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A. H(4) invariants

A general polynomial of degree N in the four components of the momentum p reads:

PN (p1, p2, p3, p4) =

N∑

n=0

∑

n1+n2+n3+n4=n

cn1n2n3n4
pn1

1 pn2

2 pn3

3 pn4

4 .

But any polynomial function of p which is invariant under the action of H(4) must be

invariant under every permutation of the components of p and every reflection pµ → −pµ.

In particular such a polynomial must be an even function of each component pµ and

contain only symmetric combinations of the components. As there are 4 components, we

can construct 4 symmetric combinations that are independent. They are usually chosen as

the elementary symmetric polynomials:

σ1 = p2
1 + p2

2 + p2
3 + p2

4

σ2 = p2
1p

2
2 + p2

1p
2
3 + p2

1p
2
4 + p2

2p
2
3 + p2

2p
2
4 + p2

3p
2
4

σ3 = p2
1p

2
2p

2
3 + p2

1p
2
2p

2
4 + p2

1p
2
3p

2
4 + p2

2p
2
3p

2
4

σ4 = p2
1p

2
2p

2
3p

2
4

Noticing that the variables p2
µ are the roots of the polynomial

Q(t) = t4 − σ1t
3 + σ2t

2 − σ3t + σ4

5At least for L-shaped loops.
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the invariant polynomial PN can be written, after recursive substitution of all fourth powers

of the p2
µ’s, as a polynomial P̃N in the four symmetric invariants:

PN (p1, p2, p3, p4) = P̃N (σ1, σ2, σ3, σ4) .

We could have chosen other invariants to represent the polynomial, as the power sums

p[n] ≡ pn
1 + pn

2 + pn
3 + pn

4 . They can be indeed recovered from the symmetric invariants σn

via the recursive formulas:

σ1 = p2

2σ2 = σ1p
2 − p[4]

3σ3 = σ2p
2 − σ1p

[4] + p[6]

4σ4 = σ3p
2 − σ2p

[4] + σ1p
[6] − p[8] .

Thus, any polynomial on the four components of p invariant under the action of H(4) can

be written as a polynomial in terms of the power sums p[n]. A complete, elegant proof can

be found in [8].
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